
Getting started with
Salesforce DevOps Center
and Elements.cloud

Salesforce DevOps Center Implementation Guide v1.2 Page 1 of 42

About this Guide 3

Introduction to DevOps Center 4

Core DevOps principles 5

DevOps is not just for technology projects 5

Implementation lifecycle 5

Low Code No Code vs Pro-code 7

Environments, pipelines & branching 8

Source Control 9

CI/CD 10

Shift Left 13

Metadata dictionaries and documentation 14

Managed Packages and data as metadata 14

Salesforce Clouds 15

Implementation lifecycle in detail 16

Org discovery 17

Capture and validate requirements 17

Define Work Items 18

Configure and build systems 19

Test and deploy systems 20

Drive and measure adoption 20

Help and training 20

Gathering feedback 20

Migrating to DevOps Center 22

Challenges of Change Sets 22

How DevOps Center works 22

Salesforce DevOps Center Implementation Guide v1.2 Page 2 of 42

DevOps Center Pipelines 22

GitHub Source Control 25

Considerations and limitations 26

Partner Extensions 27

Tech stack and architecture 29

DevOps implementation 32

Overview 32

1. Streamline implementation lifecycle processes and assign roles 32

2. Set up GitHub source control 33

If your organization is new to GitHub 33

Existing GitHub users 35

3. Align Pro-code developer GitHub processes 36

4. Install DevOps Center Managed Package 36

5. Setup Elements.cloud 37

Creating Elements account and Space 37

Connecting orgs 37

Installing Managed Packages and Chrome Extension 37

Invite users and give access to orgs 39

Jira integration 39

5a. Put in place Users Story and Release Management 39

6. Follow new process/approach for the next release 39

7. Post-release review and fine-tune process 39

Resources 40

Salesforce DevOps resources 40

Links in this document 40

Feedback 40

Salesforce DevOps Center Implementation Guide v1.2 Page 3 of 42

About this Guide
It is intended to explain the core DevOps principles so that organizations can maximize
the benefits of migrating from DevOps Center. It has been written with Elements.cloud
team’s experience of the pilot, working with customers on the pilot, and building a partner
extension alongside the DevOps Center team.

DevOps is actually a vast, and potentially confusing subject. While Salesforce
DevOps Center helps Trailblazers replace change sets rather easily, there is more
to using this tool for effective app development. DevOps Center Implementation
Guide from Elements.cloud takes readers on a gentle tour of DevOps and the
release management principles used by Salesforce DevOps Center. Then you get
the step-by-step guide on getting the job done. This guide should be part of every
Trailblazer's startup kit for using the Salesforce DevOps Center."

Vernon Keenan, Senior Industry Analyst, SalesforceDevOps.net

This Guide is organized into three sections.

- An overview of DevOps best practice principles
- How DevOps Center works and the Elements integration
- Implementing DevOps Center

Salesforce DevOps Center Implementation Guide v1.2 Page 4 of 42

Introduction to DevOps Center
Moving metadata between Sandbox and Production Orgs has never been easy,
particularly for the declarative developer – i.e. the Admin. Change Sets are a painful
experience and replacing them has been long overdue.

Fortunately, that wait is over. DevOps Center is the free replacement for Change Sets and
it went into public Beta in June with GA in Fall 22. So we should expect some
announcements at Dreamforce22 in September about GA and the roadmap.

DevOps Center is all about change and release management and introducing
DevOps best practices to our entire community, regardless of where you fall on the
low-code to pro-code spectrum

Karen Fidelak – Salesforce DevOps Center Product Manager

The goal of DevOps Center is to allow low code / no code declarative developers
(Admins) to drive deployments in the same rigorous manner that pro-code developers
(Developers) do, but with an easily understood point and click interface. There will then
be just one single source of configuration and code that is managed in GitHub which will
improve team collaboration and compatibility across all functions; admins, developers,
release managers, QA, and business stakeholders.

The vision is that DevOps Center will support a unified deployment approach across
Salesforce platforms – Lightning, Heroku, Mulesoft, Commerce, Marketing, and 3rd party
ecosystem. The first release supports the Lightning platform and it has been architected
to enable partners to build extension packages.

Launch blog DevOps Center is in open beta! written by Karen Fidelak.

https://developer.salesforce.com/blogs/2022/06/devops-center-is-now-in-open-beta

Salesforce DevOps Center Implementation Guide v1.2 Page 5 of 42

Core DevOps principles

DevOps is not just for technology projects
The development, launch, and subsequent changes to any product or service all go
through the same lifecycle; requirements definition, development of a set of planned
changes, the implementation and testing of those changes, and then the release. Let's
call this the “implementation lifecycle“ which is a generic term.

The level of rigor of the implementation lifecycle process is driven by the complexity and
the risk of what is being launched. As Salesforce 360 is becoming a reality in organization
after organization, the Salesforce core platform is no longer an isolated tactical
application. It is a strategic platform in the IT landscape with integration to other
Salesforce clouds and external systems. Making uncontrolled changes can have a
material impact as it introduces risks; business risk, technical risk, and
regulatory/reputational risk. This means Salesforce needs a formal process for
implementation if you are going to accelerate the speed of innovation.

Implementation lifecycle
There are different terms that you will hear to describe the Salesforce implementation
lifecycle. These terms include Development Operations (DevOps), Application Lifecycle
Management (ALM), Software Development Life Cycle (SDLC), and Continuous
Integration / Continuous Delivery (CI/CD).

DevOps is the term that is gathering momentum in the ecosystem to describe the
implementation lifecycle and the applications that support it. However, DevOps is often
depicted as the entire implementation cycle as you can see in the images below. You will
recognize it as it is in Salesforce DevOps presentations, articles, and training materials.

A huge impact on the success of the project is the upfront analysis and design. This
happens in the “Plan” phase. In the Plan phase in the image below are the following
activities: capturing requirements, process mapping, release planning, architecture
design, user design, technical design, creation of user stories/work items, and the risk
assessment in terms of business, technical and regulatory risk of the user stories and
therefore the release. Whew!! Each of these activities individually could be as large as the
“Test” or “Release” activities that have their own segment of the donut.

Salesforce DevOps Center Implementation Guide v1.2 Page 6 of 42

As Abraham Lincoln, a famous President and a low-code expert said “Give me six hours to
chop down a tree and I will spend the first four sharpening the ax.” These are wise words
applied to any project, but they're even more relevant when the misguided application of
agile and the compelling speed of low code means that developers rush into the build
phase without sufficient analysis and planning. The resulting rework and tech debt
eliminate any benefits of speed.

So the core of any DevOps implementation is putting in place a set of documented and
agreed implementation processes that cover the entire lifecycle, not just the
development activities. You need to get all the stakeholders - platform owners, business
analysts, designers, architects, admins, developers, release managers, and consultants -
literally, on the same page. BTW these are roles or skill sets, not individuals. We know that
in many - or most - organizations these roles are covered by just a few people.

As the implementation processes will vary very little by industry or size of the
organization, later on in the guide we discuss each step in more detail in the
implementation lifecycle that is shown in the image below.

Salesforce DevOps Center Implementation Guide v1.2 Page 7 of 42

Low Code No Code vs Pro-code
Low Code No Code (LCNC) is declarative development. It is drag and drop. It is quicker
than coding. It is getting more powerful with automation like Flow which means there is
less need to code. There are of course business requirements that can only be satisfied
by writing code. The important thing is that LCNC is coding; declarative development. So
it needs to follow the same disciplines as coding. It is just easier and more intuitive. And
the great news is that Salesforce is considered by industry analysts to be the #1 LCNC
platform.

In addition, there are LCNC platforms that sit on top of Salesforce or extend what can be
done by declarative developers. Examples are form-building apps like GetFeedback and
FormAssembly, or workflows like Nintex and Workato. Also, there are integration platforms

Salesforce DevOps Center Implementation Guide v1.2 Page 8 of 42

that could be considered LCNC. These include Zapier and Celonis Make (originally
Integromat).

The LCNC developers have traditionally been called Salesforce Admins but it is better to
consider them as declarative developers to make the point that they are developing
applications.

Pro-code developers are simply solving more technically challenging requirements that
are beyond the drag-and-drop capabilities of the Salesforce core platform. They are
writing code and are familiar with using Command Line Interface (CLI), source control
systems, and scripting to push their changes through the pipeline.

DevOps Center gets both LCNC and Pro-code developers working in the same way.

Environments, pipelines & branching
A pipeline is a series of orgs (environments) that metadata changes go through from
development to production. So you can have more than one pipeline. You could have 3
different pipelines; high-risk changes, low-risk changes, and hot-fix.

Each developer (LCNC and Pro code) will have their own dev org - their branch. So, at
some point in the pipeline, the changes from the different developer orgs need to be
merged. In the image below you can see the 2 different dev environments have been
defined along with the sandboxes and production.

Salesforce DevOps Center Implementation Guide v1.2 Page 9 of 42

DevOps Center Environments

DevOps Center allows you to define the pipelines and it manages the movement of
metadata through the pipeline. In the open beta and initial GA release. There is a single
path rather than parallel path options. What that means is DevOps Center can support
multiple developers feeding into the pipeline. But then, after that, it can only be a single
flow through to Production.

Source Control
One of the core principles is that all metadata changes are saved to a source control
system that is external to Salesforce. This means that all metadata for each org in the
pipeline will be stored in the source control system. And when a metadata item is pushed
or promoted from one org to the next in the pipeline, the source control system needs to
be updated.

Salesforce DevOps Center Implementation Guide v1.2 Page 10 of 42

Don’t worry if this seems overwhelming. DevOp Center manages the source control
system behind the scenes and hides the complexity. In the open beta and initial GA
release of DevOps Center, GitHub is the supported source control system. You only need
the free GitHub account. Other systems such as BitBucket are in the product roadmap.
There is a Trailhead badge on Git and GitHub Basics if you are interested in what a source
control system does.

CI/CD
CI/CD stands for Continuous Integration/Continuous Delivery. The concept is that work
can be broken down into smaller chunks and using automation you can move to a daily
release, or even more frequently. To get a change from the developers into production,
they will be moved through the different sandboxes in the pipeline. So part of the tooling
is detecting changes. Automated tests need to be run and if successful then the change
is moved to the next stage in the pipeline. So these automation jobs can get quite
complex.

https://trailhead.salesforce.com/content/learn/modules/git-and-git-hub-basics

Salesforce DevOps Center Implementation Guide v1.2 Page 11 of 42

Below is an image and an excerpt from Gearset’s Launchpad training site. where you can
learn more about CI/CD.

“Across all software stacks, CI/CD automation is just a script that gets triggered on
a periodic basis or when a change to your repository is detected. But automation
jobs can get very complex. When a change is detected, code has to be fetched,
compilers run, a variety of automated tests need to execute in different runtime
environments, and so on. In the Salesforce world, it's a little more straightforward
because a Salesforce org is both your compiler and the runtime that your code
executes under. For this reason, CI/CD within the Salesforce context is primarily
focused on automating testing and deployments.”

Image from Gearset Launchpad

https://blastoff.devopslaunchpad.com/assignment/lppacAMakY

Salesforce DevOps Center Implementation Guide v1.2 Page 12 of 42

While DevOps Center doesn't have built-in automation for CI/CD yet, it will happily work
alongside it. As you can see from Gearset’s maturity curve below, DevOps Center will get
you to Level 2 and once you start to work and refine your DevOps processes you can get
to Level 3. CI/CD is Level 4 and 5 but you will need to invest in more sophisticated tooling
than DevOps Center.

Gearset Maturity curve

Salesforce DevOps Center Implementation Guide v1.2 Page 13 of 42

Shift Left
What exactly is Shift Left? In simple terms, it is the process of early analysis or validation
which means we shift the identification of a problem to the left i.e. earlier in the plan.
There are numerous studies showing the financial benefits of Shift Left but it is pretty
self-intuitive. It is 100x cheaper to fix an issue in analysis than in production. It is also
100x less stressful.

In the diagram below the blue area is where the effort is expended in Shift Left. The
purple area is the effort in a traditional model. What is important is dollar signs are the
cost to fix any problem at any phase. As you can see it gets more expensive the further
down the lifecycle that you discover an issue.

Shift Left

Unfortunately, DevOps talks about Shift Left as earlier testing as they are considering
only the Develop & Build and Test phases. But if we look further left….. Are the
requirements really understood before the app starts being developed? How powerful
would it be to know the impact of changes to Org metadata before it breaks the Org?
What is the cost of downtime created by a patch that was rushed into production?
Without accurate analysis, you may be delivering the wrong features with the risk of
breaking the org which impacts adoption and erodes trust, even if you deploy to
Production faster and often.

Understanding and validating the business requirements and the impact of the change
from a technical, business, and regulatory basis is the cornerstone of Shift Left. This work
is called business analysis (BA) and Salesforce has just announced the Salesforce BA
Certification. Here is the exam guide which sets out the scope of BA. You should use the
implementation of DevOps Center to put in place a solid BA process and documentation
standards.

https://trailhead.salesforce.com/en/help?article=Salesforce-Certified-Business-Analyst-Exam-Guide

Salesforce DevOps Center Implementation Guide v1.2 Page 14 of 42

Metadata dictionaries and documentation
Salesforce configurations can get complex quite quickly. Poor documentation of metadata
changes can lead to runaway technical debt which compromises agility. If the purpose
and use of a metadata item is not understood, then there is a risk that changing it will
break the org. So often a new, but similar, metadata item is created. And so it goes on.
Multiple fields, flows, picklist values, record types etc.

Salesforce sessions on tech debt and cleaning up your org recommend that you have a
metadata dictionary to track changes. You need a metadata dictionary for each org -
Production and Sandboxes - where metadata changes can be documented. The good
news is that the metadata dictionaries can be built and maintained automatically and
quite a lot of automated documentation can be generated. The nightly sync can build a
change log and alert you to changes. The information about metadata items can be
generated. The field population can be calculated. The impact assessment and
dependencies can be analyzed and documented in a visual tree. This is available to all
teams working in different sandboxes to make better design and build decisions, avoiding
conflicts well before any metadata is committed. This just leaves manual documentation
such as process maps, architecture diagrams, specs, and images or screenshots to be
added to or linked to the metadata items.

You should also consider building metadata dictionaries for other apps (Salesforce
non-core, other clouds on-prem and custom) across your IT estate. Then you can link any
metadata item in them to your Salesforce orgs and to any manual documentation.

Managed Packages and data as metadata
There are several development approaches. Clearly, there is updating the metadata in an
org, and installing Managed Packages from the AppExchange. Salesforce reported that
89% of customers use partner apps.

But the development in an org can be a combination of these approaches. You can
develop the changes in an org the same way that an ISV develops an app in a Managed
Package. Think like a Product Manager and structure changes as an app. This could be as
an unlocked package. Whether it is a Managed Package or Unmanaged Package the
changes will be visible in the org and will be synced to the metadata dictionary.

Some managed packages store configuration as data in objects rather than metadata.
Examples are Vlocity, now a core part of Salesforce Industries, nCino the banking platform
ISV, and CPQ (Configure Price Quote). These config records are stored in the metadata
dictionary so that you can link and document them, but DevOps Center cannot currently
manage them.

Salesforce DevOps Center Implementation Guide v1.2 Page 15 of 42

Salesforce Clouds
Salesforce is not a single product. At the heart of it is the core platform. In the image
below the core platform covers Sales, Service, Platform, Safety, Sustainability and
Industries. Arguable, also Partners as they. create managed packages that extend the
core platform So there are links to Slack, Marketing, Commerce, Analytics and Integration
that are outside the core platform. And then there are links to the other enterprise
applications that your organization uses for finance, product management, fulfillment etc.

DevOps Center currently supports changes to core lightning platform, but not
configuration changes that are stored as data records which is how some of the Industry
solutions are built. The DevOps Center vision is to support the development of more of
the Customer360 clouds.

Salesforce DevOps Center Implementation Guide v1.2 Page 16 of 42

Implementation lifecycle in detail
Every change goes through an implementation lifecycle. Implementing DevOps Center is a
change process, so it will go through the implementation change cycle. How meta is that!

You should use the implementation of DevOps Center as the catalyst to document and
get a shared agreement on your implementation lifecycle processes. Even if they are
currently well documented, DevOps Center will open up opportunities to streamline them.
Getting more rigorous business analysis in place will dramatically improve your Salesforce
ROI and user adoption. Simply replacing change sets with DevOps Center is a huge
missed opportunity.

Your terminology for each step may be different but every change (should) go through
each of the steps in the diagram below. Each step is described in more detail below.

Salesforce DevOps Center Implementation Guide v1.2 Page 17 of 42

Implementation Lifecycle

Org discovery

Initial discovery

You walk into an organization and there is little or no overall understanding of the
configuration of Salesforce. You have no idea of the scale or complexity of the org. Where
the org is hitting limits. Where the technical debt is highest. What changes will have the
highest risk? You are literally blind. It is scary. It is uncomfortable. It knocks your
confidence. Elements.cloud can automatically analyze the org, build metadata
dictionaries, add documentation, and create the impact and dependency analysis
visualizations.

Documenting evidence

As you navigate around your org you will spot things; metadata that can be deleted or
optimized; notes about what you’ve discovered who, how, and importantly, why things
were configured. You can also tag or document ideas for improvement. This is a working,
living repository of knowledge about the metadata - not just a snapshot report. Step away
from GoogleDocs or GoogleSheets. There is a better way. You can document what you’ve
found inside the org in the Elements.cloud metadata dictionary.

Capture and validate requirements

Capturing requirements

End-users identify changes they want. They may be well defined and thought through.
They may be vague wish list items and they need help to identify the real issue and
challenge the changes that have been requested. Also, the business has major initiatives,
such as CPQ, that they want to implement to improve productivity. All of these are
captured as business requirements with as much supporting information as possible. BTW
“We need Einstein” is not really a business requirement. These requirements are captured
inside Elements.cloud along with supporting information.

Validating requirements with process mapping

The best way to understand and refine the requirements is a live process mapping
workshop with the end-users. It will drive out the true requirements and identify new
ones. It will enable a far better architected solution to be designed. The process maps
should also be used for UAT and user training, so they will have a life beyond this phase
of the project. In fact, as Salesforce implementations are iterative, the process maps are a

Salesforce DevOps Center Implementation Guide v1.2 Page 18 of 42

valuable ongoing asset. Here is the process mapping Trailhead badge and a live process
mapping session with Ryan Reynolds, actor, and owner of Aviation Gin. Elements.cloud is
the process mapping application that supports the UPN (Universal Process Notation)
standard for Salesforce.

Architecting solution

The Salesforce “Well Architected” program encourages that any solution is architected
and documented using the Salesforce Diagrams standard. Capturing the architect's
design decisions is an important step to establish the detailed changes that need to be
made to the system. Rushing straight to solutioning can have a profound longer-term
impact on system performance, technical debt, and maintainability. Architecture diagrams
can be drawn in Elements.cloud with all the power of connecting to the other business
analysis content.

Define Work Items

Creating User Stories

An User Story is the definition of the changes to the metadata that needs to be driven
through the pipeline of orgs, from a business perspective. A User Story is created in
Elements.cloud during business analysis work. The User story can be linked to all
impacted metadata items with the documentation created through the business analysis
phase to provide context. Conflicts can be identified early if the same metadata item is
linked to multiple user stories in the same or different releases.

Understanding the impact/risk of changes

During business analysis, the risk of a User Story can be estimated. This will allow the
correct level of development and testing resources to be allocated, and which pipeline to
allocate the work to. The risks to be considered are technical (which metadata items in
which systems are impacted and the knock-on impact), business (how big a change is it
to the operation processes), and regulatory (will it break any compliance regulations). The
technical risk assessment requires an understanding of the complexity and dependencies
across Salesforce core and external systems.

Generating Work Items

The Elements.cloud User Story will generate a Work Item in DevOps Center. A Work Item
has a list of metadata items that are going to be driven from development into production.
It may also sync with an issue/ticket in Jira if that is used to track development work. A
User Story may be linked to several Work Items to track bug fixes to the original Work
Item.

https://trailhead.salesforce.com/en/content/learn/modules/business-process-mapping/understand-universal-process-notation
https://youtu.be/YmJdT7sWzBw
https://youtu.be/YmJdT7sWzBw

Salesforce DevOps Center Implementation Guide v1.2 Page 19 of 42

Defining Release

A Release is a logical collection of changes. So a Release in Elements.cloud has one or
many User Stories. With Change Sets, the entire Change Set was effectively a Release.
This is because it had to have all the metadata items in the release. But with DevOps
Center, you can split changes into a number of Work Items and a Release can have many
User Stories and hence one or many Work Items associated with it. A Release could be
many Work Items for a new app with hundreds of metadata items. Or for an upgrade or a
hotfix, a Release could only be just one User Story and therefore one Work Item, with one
or two metadata items. An Elements.cloud Release is a collection of User Stories that are
connected to DevOps Work Items. The metadata items on the Work Items are kept in sync
with the User Stories. At a Release level, inside Elements.cloud, you can see potential
conflicts before they hit development or test.

Configure and build systems

Defining a pipeline

DevOps Center makes the process of driving the Work Items through the pipeline
significantly easier than change sets. The first task is to define a pipeline which is a series
of orgs and branches from development through to production. There can be a number of
pipelines. For high-risk changes the pipeline will have a number of sandboxes between
development and production - for example Dev, UAT, Staging, Training, Production. For
low risk changes it might only be Dev - UAT - Production. For hot fixes it is Dev and
Production. DevOps Center makes it so easy to deploy changes that there is less excuse
to develop straight into Production.

Developing (LCNC and Pro-code)

The changes may be made using a declarative language or coding. The definition of the
work will be the Work Item or a Jira ticket, but with the related Elements.cloud User Story
information shown alongside. This extra information will reduce ambiguity and potential
rework. With DevOps Center each developer will have their own development org, even
declarative developers. Behind the scenes, DevOps Center will create a new branch in
GitHub for each Work Item when the Work Item is allocated to a dev org.

Documenting changes

The changes that are made to the metadata items need to be documented so that future
impact assessment is faster. Documentation reduces declarative technical debt. If the
purpose and use of a metadata item are understood then it can be changed. If not, there
is a risk that a change could have an unforeseen impact, so a new, but similar, metadata
item is created. The documentation can also be added or linked to each metadata item in

Salesforce DevOps Center Implementation Guide v1.2 Page 20 of 42

the Elements.cloud metadata dictionary. Inevitably there will be changes to the way the
changes are implemented compared to how the solution was originally designed. These
changes need to be reflected back into the Elements.cloud User Story so that the
proposed testing strategy is correct.

Test and deploy systems

Testing

The Elements.cloud User Story defines the business need and the scenarios that need to
be tested. Declarative development needs to be tested. For example, a Flow won’t need
to be tested to make sure that it will run, in the same way, you need to test code. But you
still need to check if the logic is correct and the results are as expected. Testing will be
conducted in any sandbox in the pipeline. If a test fails, it needs to be reported back and
new Work Items created against the same User Story. This is because once a Work Item
has been promoted from Dev, it cannot be updated or back-promoted.

Deploying release through the orgs in the pipeline

A Work Item is promoted from one org to the next in the pipeline. All the metadata items
attached to the Work Item are moved and DevOps Center manages metadata inside
GitHub, the source control system. If there are conflicts or errors that prevent the
promotion thrown up by GitHub or DevOps Center they are reported inside DevOps
Center. These will need to be resolved before the Work Item can be promoted. The status,
org and metadata on the Work Items are kept in sync with the Elements.cloud User Story.

Drive and measure adoption

Help and training

Adoption will be easier if you have built the app that the users need, not what they
thought they may want. But end-users will need training or instruction on how to use the
new features. This is best achieved by providing point-of-need training embedded or
attached to page layouts. Documentation in the Elements.cloud metadata dictionary can
be surfaced inside Salesforce as pop-up help.

Gathering feedback

When you are dealing with an existing Org, your change cycle arguably starts (because it
is a cycle that has no start) with feedback from end-users. These are best captured “in
the moment” when the end-user has the issue. Elements.cloud enhances the standard

Salesforce DevOps Center Implementation Guide v1.2 Page 21 of 42

help icon by adding the ability to post feedback at object, record type, or field level.
Feedback is then triaged and converted into business requirements. Ideally, you do this
from the page in Salesforce where the issue or idea occurs. That way the feedback is
already linked to the object or field it relates to.

Measuring adoption

If the org has event monitoring switched-on you have access to rich usage data. This
requires a separate Salesforce license. The historical usage data is displayed alongside a
metadata item in the Elements.cloud metadata dictionary. You can then understand
whether the new features you rolled out are being accessed by the people you expected,
in the volumes you expected. If not, what changes to communication, training, or features
are required? And where do you need to focus efforts to elicit feedback and engage your
end-users?

Salesforce DevOps Center Implementation Guide v1.2 Page 22 of 42

Migrating to DevOps Center

Challenges of Change Sets

This is going to make life for Admins exponentially easier. Those who battle change sets
every day know that they are painful, frustrating, and time-consuming.

When you create a change set, you add each metadata item one by one. A new change
set needs to be created to push changes between orgs; Dev to UAT, and another identical
one to go from UAT to Prod. There is no option to copy a change set with all the metadata
items. A change set can get big with hundreds of metadata items because it is a release.
With DevOps Center you can break the release into a number of smaller, more
manageable work items.

How DevOps Center works

As an Admin who is developing straight into production or using Change Sets to move
metadata changes between sandboxes and production, there will be a change to how you
work. This is because the aim is to drive modern best practices like source control into
the deployment approach. Here are some useful videos

● Overview and demo of DevOps Center in action including Elements extensions
● Detailed demo of DevOps Center
● How to use DevOps Center alongside pro-code developers

There are 3 principles that you need to understand which were discussed earlier at a
generic level. Here they are discussed wrt to DevOps Center.

DevOps Center Pipelines

This is the sequence of orgs that a change is pushed through from development to
production. You may have several pipelines defined. A pipeline for high risk changes could
be Dev (scratch or sandbox) – Test (sandbox) – Staging (sandbox) – Prod (production).
Another might be for Hot Fixes which is just Dev – Prod. At Elements.cloud we have 4
different ones – High, Medium, Low and Hot Fix. This enables us to allocate the right level
of development and testing resource to any release based on its technical, business and
regulatory risk. The lower the risk of the changes, the faster and cheaper it is to get into
production.

In DevOps Center you define the Pipelines and link each stage to a different org.

https://youtu.be/Yup50jsJ8-o
https://drive.google.com/file/d/10uUfqyaMylMDOOUNpFNwMN5wip-3fhOe/view
https://drive.google.com/file/d/1SvzwKc-kGbC2Yf02OOe7_dikqh2Dv0yl/view

Salesforce DevOps Center Implementation Guide v1.2 Page 23 of 42

DevOps Center Pipeline

DevOps Center Work Items and Bundles

When you are planning the work you define a Release that is made up of multiple User
Stories. These are developed during the business analysis phase when you are
understanding the business users’ requirements. The more rigorous the analysis, the
better the User Story. More time spent here will reduce downstream rework and increase
adoption because you are “Building the right thing”. This is the work before using DevOps
Center.

In DevOps Center the Work Item is the same as an Elements.cloud User Story. The Work
Item is the collection of metadata that is being pushed through the pipeline. So a Work
Item is the same as a Change Set, or part of it. A Change Set can sometimes be hundreds
of metadata items because it is the Release. But with DevOps Center you can break the
Release into a number of smaller, more manageable Work Items grouped together as a
Bundle. In DevOps Center you group Work Items into a Bundle at a certain point in the
Pipeline – i.e. Staging. So when you promote a Bundle it takes all the Work Items and
promotes them at the same time. BTW a User Story could be related to multiple Work
Items – the original Work Item and a new Work Item with changes to fix issues found in
testing.

Salesforce DevOps Center Implementation Guide v1.2 Page 24 of 42

Comparing data: Business Analysis and, before and after DevOps Center

Currently, you need to create a new Change Set and add all the metadata every time you
push changes from org to org. You cannot simply copy it. Building Change Sets one
metadata at a time is a massive time suck and source of constant frustration. And so
many times the Change Set fails and you have to keep cloning it.

We got great feedback from the early pilot users of Salesforce DevOps Center who were
also Elements.cloud customers. They saw immediate benefits, but also it helped shape
the roadmap.

With Change Sets you are ecstatic if it goes through the first time. With DevOps
Center you are disappointed if it doesn’t.

John Eichsteadt, Platform Owner, Marcus & Millichap

In DevOps Center when the Work Item is created and linked to a development org it
creates a GitHub branch behind the scenes. You can then pull a list of all the metadata
changes from that org and select them from the list to add to the Work Item. You can also
selectively add other metadata items to the Work Item. You do this once, as it is the Work
Item that flows through the pipeline.

Salesforce DevOps Center Implementation Guide v1.2 Page 25 of 42

DevOps Center showing a Work Item

GitHub Source Control

All the management of GitHub branches and moving metadata between branches and
Salesforce orgs is managed by DevOps Center behind the scenes. GitHub is the central
source control system but Admins do not need to understand GitHub and the CLI.
Developers who are using CLI commands to manage GitHub don't need to make any
changes now for the GitHub integration. They just need to be sure they're committing to a
branch that matches the Work Item name. Planned for GA is a CLI command for promote,
so they can use that command for deploys.

Using GitHub is the biggest change for the Admin but it is important because it provides a
consistent way of managing changes to Salesforce and enables better governance. It is
forcing the adoption of development best practices, but with all the complexity hidden
away.

The good news is that you can use the GitHub free tier.

Salesforce DevOps Center Implementation Guide v1.2 Page 26 of 42

Considerations and limitations

DevOps Center is a deployment tool. It is free and it has been built as the replacement for
Change Sets. So yes. IT. IS. AMAZING.

But you need to understand the scope of DevOps Center. Think of it as an elegant way to
drive changes through a deployment pipeline. It is not a sophisticated commercial DevOps
tool with features like backup and rollback, testing, ticketing integrations, and conflict
checking. Some of these will be in the roadmap and some features will be through partner
extensions.

However, the architecture is in place to allow partner-developed extensions. And the
DevOps Center team has a clear view of the major roadmap items based on feedback
from the pilot and closed beta users. Here are the current considerations.

● Initially it will only work with GitHub, so if your developers are using another source
control system such as BitBucket, then either they will need to change to GitHub
or wait until a later release of DevOps Center. Using two different source control
systems is a recipe for disaster. Support for BitBucket was identified as a major
roadmap item.

● The DevOps Center approach currently supports org-based development, rather
than package-based development (DX), but for the vast majority of the ecosystem
org-based development is the current approach.

● There is currently no integration with Jira – which is the most popular ticketing
system – to keep Jira User Stories with DevOps Center Work Items in sync.

● There is no visibility of the same metadata item across different Work Items in the
Release in the same Pipeline or across different Pipelines. This makes managing
Work Items for the Release Manager challenging, particularly if Pipelines have the
same stage set as Bundled.

● The lack of visibility of metadata item conflicts across Work Items makes resolving
Github errors difficult, such as the most common rebase error. This is the error that
is thrown up when a Work Item cannot be promoted because it needs changes
from another Work Item to already be in place. BTW These problems occur when
using Change Sets, but are not flagged because a Change Set simply overwrites
the metadata, and you only find out when the org breaks. So using DevOps Center,
GitHub, and source control puts in place more robust metadata management
practices.

Salesforce DevOps Center Implementation Guide v1.2 Page 27 of 42

Partner Extensions

The DevOps Center team has architected it so that partners can develop extension
packages. Their expectation is that partners provide additional capabilities and
integrations. The DevOps Center app is installed as a Managed Package. At the time of
writing it has 17 custom objects, 859 Apex classes, 15 Apex triggers and 80 Lightning
Component Bundles. So it can be enhanced through an extension Managed Package. As
the screens are not Lightning Pages there is no ability to drop in Lightning Web
Components and that makes any UI-based integration difficult.

The first partner extension is Elements.cloud which was launched at Salesforce
TrailblazerDX in March ’22 in the Salesforce DevOps Center session. The extension
package is providing the support that DevOps Center needs to address some of the
current limitations and extend its capabilities.

If you don't have Elements already, it is a paid product. For existing Elements.cloud
customers, the extension is a part of the core application, so is free.

The extension adds to the core business analysis, metadata dictionaries and impact and
dependent analysis. The additional capabilities are:

● the creation of Work Items linked to a User Story from Elements or Jira
● synchronization of Jira User Stories with Elements User Stories and DevOps

Center Work Items
● the aggregated view of metadata across Work Items for conflict resolution and

management of releases

Salesforce DevOps Center Implementation Guide v1.2 Page 28 of 42

DevOps Center with Elements.cloud right panel

Elements.cloud metadata dependency tree and impact analysis

Salesforce DevOps Center Implementation Guide v1.2 Page 29 of 42

Tech stack and architecture
The development lifecycle needs to be supported by technology to improve productivity,
scalability, and accountability. Using GoogleDocs or a patchwork of free utilities or
custom objects is no longer sufficient. Salesforce development now requires a
sophisticated set of functionality that supports each phase of the implementation
lifecycle. It requires a single source of all change documentation and metadata so that
stakeholders can collaborate. Anything less slows down delivery and adds risk.

Elements.cloud, DevOps Center and GitHub together support the entire lifecycle. The
functionality required to support the lifecycle is in the table below and the architecture
diagram below that.

You can see from the table below that Elements.cloud supports the earlier phases of
business analysis. It also supports the integration with DevOps Center.

Feature Phase Salesforce
Platform

Salesforce
DevOps

Elements
. cloud

Jira Github

Feedback BA x

Requirements BA x

Process maps BA x

Architecture/
ERD diagrams

BA x

User Stories /
Work Items

BA / DevOps x x x

Releases BA / DevOps x x

Salesforce DevOps Center Implementation Guide v1.2 Page 30 of 42

Feature Phase Salesforce
Platform

Salesforce
DevOps

Elements
. cloud

Jira Github

Metadata
dictionary and
dependencies

BA / DevOps x

Development DevOps x x x x

Testing DevOps

Deployment DevOps x x

Help Operations x x

Adoption x x

In the pilot phase we talked about a cut-down Elements license for DevOps Center. But
talking to clients it became clear that removing core functionality such as metadata
dictionaries and impact and dependency analysis did not make sense. They are a critical
part of the DevOps process and are needed by DevOps Center for conflict identification
and helping make sense of the GitHub errors.

Instead, we are offering unlimited licensing which includes the DevOps Center extension.
The license cost is based on the number of end users in the production org. You can work
with our team on a free proof of concept so you can build a business case.
Elements.cloud/pricing

You do not need to implement Element.cloud to use DevOps Center. You can use DevOps
Center on its own. Clearly, you won’t have the business analysis capabilities, org
dependency trees, conflict checking and integrations. Without these features, you are
flying blind and are likely to make changes that will break the org.

http://elements.cloud/pricing
http://elements.cloud/bookdemo
http://elements.cloud/pricing

Salesforce DevOps Center Implementation Guide v1.2 Page 31 of 42

You do not need to implement Jira. But Jira is used in a large number of organizations to
track development work which is why it is shown in the table and the architecture
diagram.

You must implement GitHub with DevOps Center.

The diagram below shows the architecture, integration, and flow of actions between
these apps. The purple box in Jira and Salesforce is the right panel showing Elements
information using the Chrome Extension

Technical architecture

Salesforce DevOps Center Implementation Guide v1.2 Page 32 of 42

DevOps implementation

Overview

The implementation below assumes that you are also using Elements.cloud and Jira. If
you are not then ignore step 5 and replace it with 5a

1. Streamline implementation lifecycle processes
2. Set up GitHub.com source control accounts
3. Align Pro-code developer GitHub processes
4. Install DevOps Center Managed Package into Prod
5. Create Elements.cloud account and install core Managed Package, DevOps

Extension Managed Package and Chrome Extension
6. Follow new process/approach for the next release
7. Post-release review and fine-tune process

1. Streamline implementation lifecycle processes and assign roles

As we said earlier, this is the opportunity to reengineer your implementation processes -
from idea to adoption. This is not a hugely time-consuming activity. Process mapping in
live workshops can be really effective at gaining consensus AND documenting the agreed
processes very quickly. There is a process mapping Trailhead and this short video is a live
workshop with Ryan Reynolds (actor and owner of Aviation Gin) where we map out the
process for making gin.

You need to think about the earlier business analysis work, and how you risk-assess
changes using the metadata dictionary and dependency analysis. That is where you will
get the most value. Make sure that you build the right thing. Then you can use DevOps
Center to build the thing right.

Below is a typical top level process diagram for your implementation cycle. Any activity
box can drill down to the next level of detail. Any activity box can have attachments for
more guidance. And you have version control so you can iterate. That’s the power of UPN.

http://github.com/
http://elements.cloud
https://trailhead.salesforce.com/en/content/learn/modules/business-process-mapping/understand-universal-process-notation
https://www.youtube.com/watch?v=YmJdT7sWzBw
https://www.youtube.com/watch?v=YmJdT7sWzBw

Salesforce DevOps Center Implementation Guide v1.2 Page 33 of 42

Level 1 process diagram

2. Set up GitHub source control

One of the key principles behind DevOps Center is using a source control system. The
supported system is GitHub, so you need a corporate repository and create accounts for
each developer. There is no external document for this, so it is explained in full here.

If your organization is new to GitHub

One person needs to be the GitHub owner. First, they need to set up their own free
GitHub account. They can skip the personalizations. https://github.com/signup They need
to use an email and a unique GitHub username.

Then they create a GitHub organization. Go to Settings in the right user account menu.
Then select Organizations in the left menu.

https://github.com/signup

Salesforce DevOps Center Implementation Guide v1.2 Page 34 of 42

Create organization

Click the New organization button and select the free organizations. Then complete the
form to set up a business organization.

Salesforce DevOps Center Implementation Guide v1.2 Page 35 of 42

Create organization

Each of the LCNC developers needs to create a GitHub account. They can skip the
personalizations. https://github.com/signup They need to use an email and a unique
GitHub username. You then invite the GitHub users to the organization, via their GitHub
username, full name or email.

Invite users to organization

Existing GitHub users

If you have Pro-code (developer) your organization will already have a GitHub
organization set up and they will already have GitHub accounts.

Every LCNC developer needs to set up their own free GitHub account. They can skip the
personalizations. https://github.com/signup They need to use an email and a unique
GitHub username. Then they need to be invited to the GitHub organization.

If your developers are using a different source control system e.g. BitBucket, then they
will need to move to GitHub or you shouldn't be considering DevOp Center yet. One of the
key benefits of DevOps Center is that LCNC and Pro-code developers are all working off
the same core source.

https://github.com/signup
https://github.com/signup

Salesforce DevOps Center Implementation Guide v1.2 Page 36 of 42

3. Align Pro-code developer GitHub processes

Your Pro-code developers will already have pipelines, branches, and scripts to manage
metadata in and out of GitHub. These may need to be tweaked to align them with the new
processes that were developed in Step 1. If they are not using GitHub, then they either
need to move to GitHub or you should not be implementing DevOps Center.

4. Install DevOps Center Managed Package

DevOps Center is a Managed Package app and needs to be installed into an org so that it
can be accessed by developers and release managers. DevOps Center will only be able to
be installed in production orgs with Professional, Enterprise, Unlimited or Developer
Editions. You will not be able to install it into a sandbox org. There is a new page available
in Setup called DevOps Center from where the application can be enabled and installed.

Search for “devops” in the Quick Find box to install the managed package. Then follow the
detailed installation instructions in this Salesforce Help topic.

https://help.salesforce.com/s/articleView?language=en_US&type=5&id=sf.devops_center_setup.htm

Salesforce DevOps Center Implementation Guide v1.2 Page 37 of 42

5. Setup Elements.cloud

Elements.cloud is not required to make DevOps Center work, but there are huge benefits.
Elements is an AWS app with two Managed Packages (core and DevOps Extension) and a
Chrome Extension. You can run a free 2-week trial. At the end of the trial period you can
run a Proof of Concept and work with us to build a business case, or purchase.

Creating Elements account and Space

Sign up at https://Elements.cloud. Create a user account where the user name is your
email address. The signup wizard will ask you to create a Space which is your
organization’s name.

Connecting orgs

Then connect the Production org. Elements will then start building a metadata dictionary
(org model) and analyzing the org impact and dependencies.

Create user account and Space

You also need to connect all the sandboxes that are in your pipeline to the Elements
Space so that Elements can build metadata dictionaries for them.

Installing Managed Packages and Chrome Extension

The Elements core Managed Package and the Elements DevOps Extension Managed
Package needs to be installed in the org where DevOps Center is installed. This enables
the integration with DevOps Center.

http://elements.cloud
https://elements.cloud

Salesforce DevOps Center Implementation Guide v1.2 Page 38 of 42

To install the Elements core Managed Package, use the link on the Elements.cloud
website under the LOGIN / REGISTER menu item. Also the Elements core Managed
Package needs to be installed in any other org that is in the pipeline if you want field
population analysis. There is a different Managed Package for Production vs Sandbox.

Install managed package

The Elements DevOps Extension Managed Package can be installed from the Space
Management - Connections page. Select the DEVOPS tab along the top of the page. Click
to connnect the org where you have installed DevOps Center. Then install the managed
package.

Salesforce DevOps Center Implementation Guide v1.2 Page 39 of 42

The Chrome Extension is installed by every Elements user who needs to access the right
panel in Setup or DevOps Center or give in-app feedback. The Chrome Extension can be
rolled out to users as a standard extension. Here is the help topic. Or you can download it
from the link on the Elements website under the LOGIN / REGISTER menu item.

Install Chrome extension

Invite users and give access to orgs

Users can be Admin, Editor, or Viewers in the Space. You can then give them access to
each of the metadata dictionaries if they require it. People will have different roles -
business analyst, admin, developer, release manager, tester, trainer.

In smaller organizations, one or two people will fulfill all the roles. In larger organizations,
people will probably have only one or two roles. When you invite users to Elements you
need to decide on their access rights based on their roles. Users are invited in the Users
menu item in Space Settings. Here is the help topic.

Jira integration

The Elements Jira integration keeps Jira projects / Elements Releases, and Jira tickets /
Elements User Stories / DevOps Center Work Items in sync. Instructions to set up the Jira
integration are in the help topic.

5a. Put in place Users Story and Release Management

If you are not going to implement Elements.cloud, then you need to put something in
place to document the business analysis, understand your org configuration, manage
your user stories, group them into releases and keep them in sync with the Work Items in
DevOps Center.

https://support.elements.cloud/en/articles/2673186-elements-chrome-extension
https://support.elements.cloud/en/articles/1257799-invite-users-or-import-users-to-a-space
https://support.elements.cloud/en/articles/6265156-connecting-jira-cloud-to-elements

Salesforce DevOps Center Implementation Guide v1.2 Page 40 of 42

6. Follow new process/approach for the next release

Great. You are ready to prove this on the next changes you are making. You can run your
existing change processes in parallel, so you don’t need to wait for all the current projects
to finish. However, don’t pick anything that is too big or visible for the first set of changes;
CPQ or a set of board dashboards. Pick something that is small enough to be
manageable, but large enough to prove the processes.

7. Post-release review and fine-tune process

After the first week or two of using the process, schedule a review workshop with all
those involved in the process. Use the process maps you created to drive the meeting
and make changes or add sticky notes to the draft version as you identify improvements.
If you are using Elements then you have sticky notes, commenting, and version control.

Salesforce DevOps Center Implementation Guide v1.2 Page 41 of 42

Resources

Salesforce DevOps resources

Customer DevOps Center Trailblazer Group

Partner DevOps Center Trailblazer Group

Release Notes

Installation and Configuration

User’s Guide

Links in this document

DevOps Center installation

DevOps Center demo video

Trailhead GitHub Basics

GitHub signup

Trailhead Process Mapping

Salesforce BA Certification guide

Salesforce Architect site

DevOps Launchpad (Gearset)

Elements trial set up

Elements user management

Elements Jira integration

Feedback

If you have feedback, find issues or feel this Guide needs more information in any area,
then please let us know success@elements.cloud

https://trailblazers.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F94S000000GuygSAC
https://partners.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F94V000000g2sWSAQ
https://help.salesforce.com/s/articleView?id=release-notes.rn_devops_center.htm&type=5&release=238
https://help.salesforce.com/s/articleView?id=sf.devops_center_setup.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.devops_center_overview.htm&type=5
https://help.salesforce.com/s/articleView?language=en_US&type=5&id=sf.devops_center_setup.htm
https://youtu.be/Yup50jsJ8-o
https://trailhead.salesforce.com/content/learn/modules/git-and-git-hub-basics
https://github.com/signup
https://trailhead.salesforce.com/en/content/learn/modules/business-process-mapping/understand-universal-process-notation
https://trailhead.salesforce.com/en/help?article=Salesforce-Certified-Business-Analyst-Exam-Guide
https://architect.salesforce.com/
https://blastoff.devopslaunchpad.com
https://elements.cloud
https://support.elements.cloud/en/articles/1257799-invite-users-or-import-users-to-a-space
https://support.elements.cloud/en/articles/6265156-connecting-jira-cloud-to-elements
mailto:success@elements.cloud

